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1 May 9, 2016

1.1 Strings and Languages

Definition. An alphabet is an arbitrary finite set containing elements called sym-
bols, characters, or letters. An alphabet will be denoted by Σ.

Example. For instance, Σ = {a, b} is an alphabet containing two elements.

Definition. A string is a finite sequence of zero or more symbols from Σ. The
symbol Σ∗ denotes the set of all possible strings over Σ. The length of a string s is
denoted by |s|. The concatenation of strings s1 = ab and s2 = ba is sb = s1 · s2 =
abba. It may also be denoted by sb = s1s2.

Remark. The empty string is denoted by ε.

Example. s1 = abab and s2 = 001 are examples of strings.

Definition. A substring of s is a string obtained from s by deleting zero or more
symbols from the beginning or the end of s. A subsequence of s is a string obtained
from s by deleting zero or more symbols from anywhere in s.

Remark. We note that a substring is a continuous sequence of characters from the
string, whereas this is not the case with a subsequence.

Example. Given the string ”EXCITINGCOURSE”, ”EXCITING” is a sub-
string and ”EXCITCOURSE” is a subsequence.

Definition. A language is a set of string over some finite alphabet.

Example. For instance, L1 = {0, 1}∗, L2 = {ε} and L3 = {anbm : m ≥ 0}, are
examples of languages.

Remark. We note that a character a or string s raised to a power m indicates that
character or string concatenated m times.

Definition. The concatenation of two languages A and B is A · B = {xy : x ∈
A and y ∈ B}.

Example. Let A = {hocus, abraca} and B = {pocus, dabra}. Then A · B =
{hocuspocus, hocusdabra, abracapocus, abracadabra}. We note that the operation
is not commutative.

Remark. The empty set concatenated with a string A is the empty set, while the
set of the empty string concatenated with a string A is A. These properties are
commutative.

Definition. The kleene star L∗ of a language L is the set of all the strings obtained
by concatenating a sequence of zero or more strings from the language L.
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Example. ε∗ = ε.

Example. Let Σ = {a, b, c}, L1 = {aibi : i ≥ 0} and L2 = {aibici : i ≥ 0}. Is it the
case that L1 ∩ L2 = ∅?

This is false since the empty string ε ∈ L1 ∩ L2.

Example. Let Σ = {a, b, c, d}, L1 = {aibi : i ≥ 0} and L2 = {cidi : i ≥ 0}. Is it the
case that L1L2 = {aibicidi : i ≥ 0}?

This is false since the exponents may be different.

2 May 11, 2016

2.1 Regular Languages

Remark. Note that all finite languages are regular???????

3 May 16, 2016

3.1 Building Languages

Example. Let L be any language. Prove that L = L+ if and only if LL ⊆ L.

In the forward direction, we first assume that L = L+. Because LL ⊆ L+, then
LL ⊆ L.

In the reverse direction, we suppose that LL ⊆ L. Now, we will show that
L = L+. L ⊆ L+ by definition of L+. To prove that L+ ⊆ L, we let w ∈ L+. Then
w is s1s2...sn such that n ≥ 1 and si ∈ L. We can reduce the number of strings
needed to represent w since we know that s1 ∈ L and s2 ∈ L. Thus, s1s2 ∈ LL. But
LL ⊆ L, so s1s2 ∈ L. We repeat this process to show that w in a string from L.

3.2 Regular Expressions

Definition. A language L is regular if and only if it satisfies one of the following
conditions:

• L is empty.

• L contains a single string (which could be the empty string ε).

• L is the union of two regular languages.

• L is the concatenation of two regular languages.

• L is the Kleene star of a regular language.
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Example. Let L be the language such that every pair of adjacent 0’s appear before
every pair of adjacent 1’s. We wish to define a regular expression for L.

Let L1 be a language such that is does not contain 11, and let L2 be a language
such that it does not contain 00. Then we note that R(L) = R(L1) + R(L2).
Furthermore, the we can deduce that R(L1) = (0 + 10)∗(1 + ε) while R(L2) =
(1 + 01)∗(0 + ε). Therefore

R(L) = (0 + 10)∗(1 + ε) + (1 + 01)∗(0 + ε)

3.3 Finite Automata

Definition. A deterministic finite automaton is a state machine such that each
node has exactly one outgoing transition for each character in the alphabet. For
each state, there must be exactly one transition for each letter in Σ.

Remark. Note that in each state, the DFA remembers only the current state.

Theorem. Palindromes are not regular. That is, a DFA cannot be constructed to
accept only palindromes.

Proof. Suppose to the contrary that there were a DFA for palindromes. Let N be
the number of states. Then, there necessarily exists at least two palindromes x and
y where x 6= y such that after reading half of each palindrome, the DFA is in the
same state. Let us denote this state as q.

Since y is a palindrome, then there is a path from q to a final state using the
last half of y. But then a string which is formed with the first half of x and the
last half of y would reach the final state despite not being a palindrome. This is a
contradiction.

4 May 18, 2016

4.1 Finite Automata Cont’d

Definition. A non-deterministic finite automaton is a state machine such that
each node has zero or more outgoing transitions for each character in the alphabet.
For each state, there may be 0, 1, or more transitions for each letter in Σ.

Remark. We may have ε-transitions in NFA’s, where there are no transitions for a
given character in the alphabet.

In the case of NFA’s, we may accept a particular sequence of inputs if at least
one of the series of choices of states dictated by the input leads to an accepting
state. We also note that any DFA is indeed an NFA.
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4.2 Properties of Non-Deterministic Finite Automaton

An NFA may be described by the tuple (Q,Σ, δ, q0, F ) where

• Q is a finite set of states.

• Σ is the alphabet.

• δ : Q× Σε → 2Q is the transition function.

• q0 is the starting state.

• F ⊆ Q is the set of final states.

Note that 2Q is the number of subsets of Q, and Σε = Σ ∪ {ε}. An NFA
N = (Q,Σ, δ, q0, F ) accepts w ∈ Σ∗ if there is a sequence of states n0, n1, ..., nk ∈ Q
and w = w1w2...wk with wi ∈ Σε such that

1. n0 = q0

2. ni+v ∈ δ(ni, wi+v) for i = 0, 1, ..., k − 1

3. nk ∈ F

Definition. A language is considered regular if there is an NFA which accepts it.
We shall refer to this definition for the following theorems.

Theorem. The set of regular languages is closed under the union operation.

Proof. Let L1 and L2 be two languages. Then there are NFA’s which accept each
of them. We now provide a starting state with ε-transitions to the original starting
states of L1 and L2. We obtain a new NFA such that it represents the union of
L1 ∪ L2.

Theorem. The set of regular languages is closed under concatenation.

Proof. Let L1 and L2 be two languages. Then there are NFA’s which accept each of
them. We attach ε-transitions from each accepting state of L1 to the starting state
of L2. We obtain a new NFA such that it represents the union of L1 with L2.

Theorem. The set of regular languages is closed under the kleene star operation .

Proof. Let L be a regular language. We need to show that L∗ is also a regular
language. It follows that an NFA representing L could be made to represent L∗ by
including ε-transitions from the accepting states to the starting state. Furthermore,
we need to accept the empty string, so we may include epsilon transitions from the

starting state to the accepting states. Therefore L∗ =
∞⋃
i=0

Li is regular.



Introduction to Computability 7

Remark. Note that although L0 = {ε} is regular, L1 = L is regular, L2 = LL is
regular (by concatenation), and so on... It is not the case that this shows L∗ is
regular. Thus we note that infinite union and concatenation are not regular.

Theorem. For every NFA, N , there exits a DFA, M , such that L(N) = L(M).
That is, the language accepted by N and M is the same.

Proof. Let N = (Q,Σ, δ, q0, F ) and M = (Q′,Σ, δ′, q′0, F
′). We will define ε(s) as

ε(s) = {q ∈ Q|q is reachable from some s ∈ S by taking 0 or more ε-transitions}

Now, we have

1. Q′ = 2Q is the number of subsets of Q

2. q′0 = ε({q0})

3. F ′ = {R ∈ Q′|f ∈ R for some f ∈ F}

4. δ′ : Q′ × Σ→ Q′, such that δ′(R, a) =
⋃
ρ∈R

ε(δ(ρ, a))

Remark. An NFA may be represented by a DFA with an exponential amount of
states.

4.3 Kleene’s Theorem

Theorem. A language L can be described by a regular expression ⇐⇒ L is accepted
by a DFA.

Proof. Proof of this theorem follows from the following established properties:

1. Every DFA can be transformed into an equivalent NFA.

2. Every NFA can be transformed into an equivalent DFA.

3. Every regular expression can be transformed into an equivalent NFA (by clo-
sure theorems).

4. Every NFA can be transformed into an equivalent regular expression.

Theorem. Every language described by a regular expression is accepted by an NFA.
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Proof. We prove by induction that every language described by a regular expression
is accepted by an NFA with exactly one accepting state different from the starting
state. Let R be any regular expression over some alphabet Σ.

Base Case: When R = ∅, L(R) = ∅. this corresponds to a starting state and
a final state, where there is no transition from the starting state to the accepting
state. When R = ε, L(R) = {ε}. This corresponds to an NFA where there is an ε-
transition from the starting state to the accepting state. When R = a where a ∈ Σ,
L(R) = {a}. This corresponds to an NFA with a starting state which transitions to
the accepting state on input a.

Induction Hypothesis: Let R be of the form R = ST , so that L(R) = L(S)L(T ).
We simply follow the rules for concatenation and use an ε-transition from the ac-
cepting state of S to the starting state of T . The cases for union and kleene star
are similar.

5 May 25, 2016

5.1 Properties of Non-Deterministic Finite Automaton Cont’d

Definition. The reversal of a language L is denoted and defined by

LR = {wR|w ∈ L}

which consists of all the strings in L reversed.

Example. Given that w = abc, find wR.

wR would be cba.

Definition. The compliment of a language L is denoted and defined by

L̄ = Σ∗\L

Example. Find the compliment of L = {a, abc}.

L̄ = Σ∗\{a, abc}.

Theorem. The set of regular languages is closed under reversal.

Proof. Let N be an NFA for a language L. We shall assume that N has a single
final state. To construct an NFA which accepts LR, we simply reverse the direction
of the transitions from each state. We obtain an NFA such that the accepting
state becomes the starting state, and vice versa. In the case that N has multiple
final states, we may simply construct an NFA with a single final state by taking
ε-transitions from the original final states to this final state.

Theorem. The counting language L = {0n1n|n ≥ 0} is not regular.
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Proof. Let M be a DFA for a language L with k states. Let us assume that this
language is regular. We will show by contradiction that the language is not regular.
We choose an n > 2k. Since n > 2k and M must accept 0n1n, then there exists a
state which is traversed at least twice by the sequence of 0’s. But then since the
current state is the only memory of a DFA, the DFA cannot distinguish between
these two strings and hence cannot correctly recognize the language.

Example. Let A ⊆ {0, 1}∗ be a regular language, and let B = {uv|u, v ∈ {0, 1}∗ and uσv ∈
A for some σ ∈ {0, 1}}. Show that B is regular.

Let M be a DFA for A. We will take two copies of M to form M0 and M1. We
construct an NFA for B which we denote N . We take the starting state of M0 to
be the starting state of N , and take the accepting state of M1 to be the accepting
state of N . We then take ε-transitions from each state in M0 to each state in M1 in
which there exists a transition to in M0 (This simulates the deletion of a character).
This is an NFA which describes B. Therefore, B is regular.

5.2 Context-Free Grammar

Definition. A context-free language is a language that can be built from strings
using unions, concatenation, kleene star and recursion.

Definition. A context-free grammar (CFG) is a structure given byG = (V,Σ, R, S)
where

• V is a set of non-terminal symbols (uppercase Latin).

• Σ is a set of terminal symbols, disjoint from V .

• R is a set of production rules detailing how each non-terminal can be converted
to a string of terminals and non-terminals.

• S is a start symbol that is an element of V .

Example. Given the rule of replacing S → 0S1, we obtain 00S11 → 000S111 →
0000S1111...

Let G by a CGF, and S be a start symbol. Then the language accepted by G is
denoted and defined by

L(G) = {w ∈ Σ∗|S ∗
=⇒ w}

where
∗

=⇒ means that we can transform S into w by a sequence of productions.

Theorem. The language accepted by the grammar G|(S → 0S1, S → ε) is the
language L(G) = {0n1n|n ≥ 0}.
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Proof. a) We prove that S
∗

=⇒ 0n1n for any n ≥ 0 by induction on n.
In the base case, S → ε. This is true since ε is a part of the language. Now,

suppose that S
∗

=⇒ 0k1k for any 0 ≤ k < n. Then

S → 0S1→ 0(0n−11n−1)1 = 0n1n

b) For every w ∈ Σ∗ such that S
∗

=⇒ w, we have w = 0n1n for some n. We again

prove by induction. Suppose that for any x ∈ Σ∗ with |x| < |w| and S
∗

=⇒ x, then
x = 0k1k for some k. In the case that w = ε, this implies that w = 0010. Otherwise,
w = 0x1 for some x. Furthermore, |x| < |w| =⇒ x = 0k1k for some k. This implies
that w = 0k+11k+1.

Example. Generate all palindromes given the language PAL = {w ∈ {0, 1}n|w =
wR}.

We note that it would be of the form S → (0S0)|(1S1)|0|1|ε.

Example. Generate the language L = {w ∈ {0, 1}∗| w starts and ends with the
same symbol and |w| ≥ 2}.

We note that it would be of the form S → (0T0)|(1T1) where T → (0T )|(1T )|ε.

Example. Generate the language L = {0n1n0m1m|n ≥ 0, m ≥ 0}.

First, we separate the language into two languages where L1 = {0n1n|n ≥ 0}
and L1 = {0m1m|m ≥ 0} where L = L1L2. For L1 we have S1 → (0S11)|ε and for
L2 we have S2 → (0S21)|ε. For language L then, it becomes S → S1S2.

Example. Generate the language L = {0n1m0m1n|n ≥ 0, m ≥ 0}.

We will proceed by solving for the outer part, and then the inner part by grouping
0n(1m0m)1n. The outer part is generated by S → (0S1)|T . The inner part is
generated by T → (1T0)|ε.

Example. Generate the language L = {w|#(0, w) = #(1, w)}.

We note that this is the language where the number of 0’s is the same as the
number of 1’s. It is of the form S → (0S1)|(1S0)|(SS)|ε.

Example. Generate all numbers without leading 0’s.

It would be of the form S → 0|(TN), T → 1|2|3|4|5|6|7|8|9, N → (DN)|ε and
D → 0|1|2|3|4|5|6|7|8|9.
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6 Midterm Questions

The midterm is out of 31 marks, and contains the following form of questions:

1. 8 short answer questions.

2. 6 true/false questions with justification.

3. Construct a DFA and corresponding regular expression.

4. Construct an NFA.

5. Construct a context free grammar (bonus question).

Remark. We note that the counting language and the language of palindromes are
two examples of non-regular languages.

7 June 6, 2016

7.1 Context-Free Grammar Cont’d

We note that in practice, context-free grammars are used in programming languages
where parsing by the compiler is used to interpret the language.

Definition. A parse tree is a tree encoding the steps in a derivation of a context-
free grammar. The internal nodes represent the non-terminals used in the derivation,
while the leaf nodes represent the terminals. By employing inorder traversal, we
generate the string of the particular derivation.

Definition. A CFG is ambiguous if there exists a string can be derived in at
least two different ways. We note that we may show that a CFG is ambiguous by
constructing two distinct parse trees which generate the same string.

Remark. It may be possible to eliminate ambiguity by rewriting the CFG, though
there is no fixed procedure for doing this. There are some CFG’s that are inherently
ambiguous and cannot be rewritten without ambiguity.

7.2 Chomsky Normal Form

We note that the following grammar is ambiguous.

S → SSSS|ε

This is because we can form the empty string in many different ways. To reduce
the possibility of ambiguity, we utilize the Chomsky Normal Form.

Definition. A CFG is in Chomsky Normal Form if it satisfies all of the following
conditions:
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1. The starting non-terminal S does not appear on the right side of any produc-
tion rule.

2. The starting non-terminal S may have the production rule S → ε.

3. The right side of every other production rule is either a terminal of a string of
exactly two non-terminals.

Remark. We note that the parse tree of a CNF is a full binary tree.

Definition. A sequence of parentheses is balanced if the total number of left
parentheses equals the total number of right parentheses, and for all prefixes of the
sequence, the number of left parentheses traversed is greater than or equal to the
number of right parentheses traversed.

Example. Generate the language of balanced parentheses.

We note that it would be of the form

S → [S]|SS|ε

where [ ] denotes the left and right parentheses.

Theorem. If x is balanced, then S
∗

=⇒ x.

Proof. Suppose that x is balanced. For the base case, when the length of x is 0, we
have that x = ε. But this is generated by S → ε. Now, suppose that we can generate
any balanced string of length < n. Let x be such that |x| = n. There are two cases
to consider: whether there is a proper prefix y of x such that it is balanced, or not.
In the first case, we note that using the fact that x is balanced and y is balanced,
we take z to be the part of x which comes after y which can be generated by S since
|z| < n and z is balanced. Thus, x is balanced. In the second case, then x = [z]
for some z. In this case, x can be generated by the rule S → [S]. Furthermore, z
is balanced since the left parentheses and right parentheses is simply the number of
those is x subtract and in every prefix of z, the number of left parentheses is greater
than or equal to the number of right parentheses due to x being balanced.

7.3 Dynamic Programming (Optional)

Dynamic programming is the practice of dividing a problem into multiple sub-
problems. Each sub-problem is solved independently and the result is stored, the
results are combined for the full solution to the problem.

Example. Given a sequence of integers, find the length of the longest increasing
subsequence (Note that this may differ from the longest substring).

We begin by splitting the problem into the smaller sub-problem of determining
the longest increasing subsequence that starts at each index of the sequence. We
then find the largest of these to determine the solution.
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8 June 13, 2016

8.1 Midterm Review

Example. If x = a1a2...an and y = b1b2...bn are two strings of the same length n,
define alt(x, y) to be the string in which the symbols of x and y alternate, starting
with the first symbol of x, that is

alt(x, y) = a1b1a2b2...anbn

If L and M are languages, define alt(L,M) to be the language of all strings of
the form alt(x, y) where x is a string in L and y is a string in M of the same length.
If L and M are regular languages, prove that alt(L,M) is regular.

Since L and M are regular, suppose that we have a DFA for each such that
L(D1) = L and L(D2) = M . Let us consider the ordered triple of (q1, q2, b), where
q1 ∈ D1, q2 ∈ D2 and b = 0/1. If b = 0, the first DFA takes a step, and if b = 1, then
the second DFA takes a step. The start state is given by (q01, q02, 0) and the final
state is therefore given by (f1, f2, 0), where f1 ∈ F1 and f2 ∈ F2. The transition
function is given

δ((q1, q2, b), σ) =

{
(δ1(q1, σ), q2, 1) if b = 0

(q1, δ2(q2, 0), 0) if b = 1

8.2 Properties of Context-Free Grammar

Theorem. Given CFG’s A and B over the same alphabet then A∪B, AB and A∗

are context-free.

Proof. We may formalize the CFG’s asGA = (VA,Σ, RA, SA) andGB = (VB,Σ, RB, SB).
Thus, L(GA) = A and L(GB) = B. We also let VA ∩ VB = ∅, which we may con-
struct by simply using new terminals to represent the values.

1. A ∪ B can be produce by adding a new start variable S, and the following
production rules

S → SA|SB
RA

RB

2. AB can be produced by adding a new start variable S, and the following
production rules

S → SASB

RA

RB
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3. A∗ can be produced by adding a new start variable S, and the following pro-
duction rules

S → SSA|ε

RA

Theorem. Every regular language is context-free.

Proof. We note that for any regular expression over an alphabet Σ, we can construct
a context-free grammar:

1. R = ∅: S → S

2. R = ε: S → ε

3. R = a: S → a

By structural induction, we may use the closure properties for union, concate-
nation and kleene star to show that every regular expression may be expressed as a
context-free grammar.

Example. Let A be a regular language, and let M be the corresponding DFA for A.
We have M = (Q,Σ, δ, q0, F ). Define a CFG for A.

We may define a corresponding CFG for A as G = (V,Σ, S,R) as follows. For
each state qi ∈ Q, we introduce a non-terminal Xi. We define the following pro-
duction rules for R such that ∀k,m ∈ {0, 1, ...m − 1} and ∀σ ∈ Σ we have the
following:

δ(qk, σ) = qm =⇒ Xk → σXm

∀qf ∈ F =⇒ Xf → ε

Remark. An example of a language that is not context-free is L = {ambmcm|m ≥ 0}.

Theorem. The family of context-free languages is not closed under intersection or
complementation.

Proof. We give a counterexample. Let L1 = {anbncm|m ≥ 0, n ≥ 0} and L2 =
{anbmcm|m ≥ 0, n ≥ 0}. We note that both of these languages are context-free,
since they are formed by using the concatenation of the counting language with
another context-free language. We note that the intersection of L1 ∩L2 = L, where
L = {ambmcm|m ≥ 0} which is not a context-free language.

We use De Morgan’s law to note that

L1 ∩ L2 = L1 ∪ L2
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We assume to the contrary that the context-free languages are closed under comple-
ment. This means that L1 and L2 are context-free. But we know that context-free
languages are closed under union, so L1 ∪ L2 is context-free. But then L1 ∪ L2 is
context-free. By De Morgan’s law, this is L1∩L2, which we know is not context-free.

8.3 Dynamic Programming Cont’d (Optional)

Example. Let M = (Q,Σ, δ, q0, F ) be an NFA. Does M accept a string w?

We represent the states in a boolean array such that F [qi] = 1 ⇐⇒ qi ∈ F ,
and F [qi] = 0 otherwise. We represent the transition function as a two-dimensional
array such that D(qk, σ, qm) = 1 ⇐⇒ qm ∈ δ(qk, σ) and D(qk, σ, qm) = 0 otherwise.
We can then write a function Accept defined as follows

Accept(qi, w) =


1 if w = ε and qi ∈ F
0 if w = ε and qi /∈ F
Accept(n, x) if w = ax, where a ∈ Σ and ∀n ∈ δ(qi, k)

However, we note that this recursive solution takes an exponential amount of
running time to compute. This recursive algorithm takes exponential time since we
are computing results many times, instead of storing the results of each sub-problem.

9 June 15, 2016

9.1 Algorithms

Definition. The Floyd-Warshall Algorithm is an algorithm for finding shortest
paths in a weighted graph with positive or negative edge weights (but with no
negative cycles). A single execution of the algorithm will find the lengths (summed
weights) of the shortest paths between all pairs of vertices.

Let the input be a directed graph G = (V,E) and w(u→ v) denote the weight of
the edge from u to v. We find the shortest path between all pairs of nodes. Assuming
that there are no negative cycles, π(u, v, n) denotes the shortest path between u and
v where all nodes have indices at most n (except u and v). Thus, given vertices
1, 2, ..., |V |, we need to consider all vertices π(u, v, |V |).

When n = 0, we have π(u, v, 0) = w(u → v). When n > 0, π(u, v, n) either
contains n, or it does not. In the case that it does not contain n, then

π(u, v, n) = π(u, v, n− 1)

In the case that it does contain n, then
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π(u, v, n) = π(u, n, n− 1) + π(n, v, n− 1)

We use these recursive definitions to find the shortest path between any pair of
vertices, by calling the minimum of the first expression with the second.

Definition. The CYK Algorithm is a parsing algorithm for context-free gram-
mars, named after its inventors, John Cocke, Daniel Younger and Tadao Kasami.

Let the input be a string w of length n and a CFG G = (V,Σ, S,R) in CNF.
That is, we have the production rules A → BC and A → a. The output is true if
w ∈ L(G) and false otherwise.

We split the problem into a smaller problems, so we let Generates(A, x) be a

function which outputs true if A
∗

=⇒ x.

Generates(A, x) =


1 if A→ x and |x| = 1

0 if A 6→ x and |x| = 1

∀A→BC∀x=yzGenerates(B, y) ∧Generates(C, z) otherwise

9.2 Class of Languages

We note that regular languages are a subset of context-free languages. Context-
free languages are a subset of P (The set of languages for which we may decide
membership in polynomial time). P is a subset of NP, which is the complexity class
for which we may verify in polynomial time. It is not known whether P = NP.

9.3 Turing Machines

Early attempts to rigorously define an algorithm resulted in Alonzo Church’s λ-
calculus. In 1936, Alan Turing presented the Turing machine, encapsulating the
idea of what is an algorithm. A Turing machine is defined as a one way infinite
tape, on which is written symbols from a finite alphabet, with a read/write head.
Formally, a Turing machine is represented as M = (Q, q0, qaccept, qreject,Σ,Γ, δ):

1. Q: A finite set of states.

2. q0: The starting state.

3. qaccept: The accepting states.

4. qreject: The rejecting states.

5. Σ: A finite input alphabet (Does not include blank).

6. Γ: A finite tape alphabet (Σ with blank).
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7. δ: A transition function of the form δ : Q′ × Γ → Q × Γ × {L,R} where
Q′ = Q \ {qaccept, qreject}.

The configuration of a Turing machine presents the position of the head on
the tape, the content of the tape, and the state of control.

C = uqv

where

1. u ∈ Γ∗ is the string before the head.

2. q ∈ Q.

3. v ∈ Γ∗ is the string after the head.

A Turing machine M accepts an input w ∈ Σ∗ if there is a sequence of states
from q0w (the initial configuration) to a configuration that contains qaccept in a finite
number of steps. A Turing machine M rejects an input w ∈ Σ∗ if there is a sequence
of states from q0w to a configuration that contains qreject in a finite number of steps.

10 June, 20, 2016

10.1 Turing Machines Cont’d

The language of a Turing machine M is denoted and defined as

L(M) = {w ∈ Σ∗|M accepts w}

1. L ⊆ Σ∗ is recognizable (recursive enumerable) by a Turing machine if
there exists a Turing machine M with L(M) = L.

2. L ⊆ Σ∗ is decidable (recursive) if there is a Turing machine M that accepts
every w ∈ L and rejects every w 6∈ L.

Remark. We note that every decidable language is recognizable, but the converse is
not true. If w 6∈ L, where L is recognized by a Turing machine, it may either reject
or loop. A Turing machine that halts on all inputs is total.

Example. Determine whether L = {02n |n ≥ 0} is decidable.

We note that on input w, M rejects w if it is not of the form 0+. We then repeat
the following steps:

1. Accept if there is exactly one 0 is on the tape.
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2. Reject if the number of 0’s on the tape is odd and greater than 1.

3. Cross off every second 0 on the tape using a new symbol.

Thus, if w = 0n, the machine halts after k iterations of the repeated steps, where
k is the largest value such that 2k ≤ n.

10.2 The Church-Turing Thesis

Definition. Let 〈M〉 denote the encoding of M as a binary string.

Theorem. Every multi-tape Turing machine has an equivalent single-tape Turing
machine.

Proof. Suppose we have multiple tapes with independent read/write heads. Initially,
we have input on the first tape. The transition function is δ : Q × Γk → Q × Γk ×
{L,R}. Let k = 2, where k indicates that a Turing machine M has two tapes. We
can encode the configuration of M into a string C of the form

C = u1qa1v1#u2qa2v2

where ai denotes the symbol that the head is reading.
Now, we define a Turing machine M ′, which operates on input w. First, we

write the starting configuration of C0 = q0w#q0 of M onto the tape of M ′. We
then repeat the following:

1. Read the configuration C of M on the tape M ′.

2. Accept if C is an accepting configuration of M .

3. Reject if C is a rejecting configuration of M .

4. Make a second pass to update the tape of M ′ such that it becomes the next
configuration of M .

Example. Let M be a single tape Turing machine with q states in the control and
let w be an input of length m such that when processing w, the machine does not
move its head left in the first m + q + 1 steps. Prove that M never moves its head
left on input w.

We note that we need m − 1 steps to traverse the initial input. For the next
q + 2 steps, the machine reads only blanks. By the pigeonhole principle, there is a
state qi which M enters at least twice after traversing the input. But this means
that when qi encounters a blank, it deterministically reaches a new state qk. But
then this is a loop, so the head
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11 Final Questions

1. True and False questions.

2. Short answer with justification.

3. DFA/NFA.

4. CFG/TM.

5. Reduction.

6. Bonus.

12 June 22, 2016

12.1 Universal Turing Machine

Theorem. There exists a Turing machine U such that on input 〈M,w〉 simulates
the Turing machine M on w.

Proof. We may consider a multi-tape Turing machine where one tape is the input,
while the other is the output. We construct a Turing machine U0 with two tapes.
On input 〈M,w〉, U0 does the following:

1. Write the start configuration of M , C0 = q0w as a binary string 〈C0〉 on the
first tape.

2. Write the description of M as a binary string on the second tape.

3. Locate on the first tape the state of M .

4. Locate on the first tape the symbol under the read/write head of M , which
we denote a.

5. Look up on the second tape the part from the transition function that is
required, δ(q, a).

6. Accept or reject if the current state is an accepting or rejecting state for M .

7. Update the first tape with the current state of M .

8. Repeat steps 3 to 7 as necessary.

Theorem. The Acceptance problem

Accept = {〈M,w〉|M accepts on w}

is recognizable.
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Proof. We utilize the universal Turing machine U which accepts the input 〈M,w〉
if and only if M accepts w. But then, U is a recognizer for Accept.

Example. Find a single tape Turing machine capable of recognizing L = {0n1n|n ≥
0} in O(n log n) steps.

We first ensure that w is not of the form 0k1l for some integers k and l. Until
all characters are crossed out, we make sure that the parity of 0’s is the same a the
parity of 1’s. We cross out every other 0 and every other 1. Repeat the last two
steps until either the string is rejected, or every character is crossed out. We accept
the string if there are no more characters.

12.2 Diagonalization

Definition. Two sets A and B have the same cardinality if there exists a bijective
function f : A→ B.

Definition. A set is countable if it has the same cardinality as as the set of natural
numbers N = {0, 1, 2, 3, ...}.

Theorem. Every set S has a cardinality less than that of their power set.

Proof. Suppose that S is a countably infinite set. We use diagonalization to show
that P (S) is uncountably infinite. We list the elements of S horizontally. Suppose
to the contrary that P (S) is countable. Then there is a way to list all possible
subsets of S as X = (x1, x2, x3...). We encode each subset as a binary string, with
1 meaning that the element is in the subset, and 0 meaning that the element is not
in the subset. But then, we can construct a new subset of S by flipping the values
along the diagonal, call xn. Since this is a subset of P (S), then it should have been
in the list. This is a contradiction from construction of this new subset since xn ∈ X
and xn 6∈ X so P (S) is uncountable.

12.3 Undecidability

Theorem. Not every language is decidable.

Proof. We want to show that there exists a language that is not decided by any
Turing machine. Note that every turing machine may be represented as a binary
string. But we know that languages are elements of the power set of all binary
strings. Thus, there are languages that are not decided by any Turing machine.

Let us define the following languages:

SelfAccept = {〈M〉|M accepts 〈M〉}
SelfReject = {〈M〉|M rejects 〈M〉}
SelfHalt = {〈M〉|M halts on 〈M〉}
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Theorem. SelfAccept is undecidable.

Proof. Suppose to the contrary that there exists a Turing machine SA that decides
SelfAccept. That is

SA accepts 〈M〉 ⇐⇒ M accepts 〈M〉
SA rejects 〈M〉 ⇐⇒ M does not accept 〈M〉

We let SAR be the Turing machine obtained from SA by swapping its accept
and reject states. That is, SAR rejects whenever SA accepts and vice versa. Now
we consider SAR to get

SA accepts 〈SAR〉 ⇐⇒ SAR accepts 〈SAR〉
SA rejects 〈SAR〉 ⇐⇒ SAR does not accept 〈SAR〉

But this is a contradiction due to the definition of SAR. Thus, SelfAccept is
undecidable.

Theorem. SelfReject is undecidable.

Proof. Suppose that there exists a Turing machine SR that decides SelfReject.
That is, for any Turing machine M

SR accepts 〈M〉 ⇐⇒ M rejects 〈M〉

In particular, we consider SR to get that

SR accepts 〈SR〉 ⇐⇒ SR rejects 〈SR〉

This is a contradiction. Therefore, SelfReject is undecidable.

Theorem. SelfHalt is undecidable.

Proof. Suppose there is a Turing machine SH that decides SelfHalt. Then, for
any Turing machine M

SH accepts 〈M〉 ⇐⇒ M halts on 〈M〉
SH rejects 〈M〉 ⇐⇒ M does not halt on 〈M〉

We now construct a Turing machine SHX from SH such that it redirects any
transitions to accept to a new state that hangs, and redirects any transitions to
reject to accept. Thus, we consider SHX
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SH accepts 〈SHX〉 ⇐⇒ SHX halts on 〈SHX〉
SH rejects 〈SHX〉 ⇐⇒ SHX does not halt on 〈SHX〉

But this leads to a contradiction since SHX hangs if and only if SHX halts, so
SelfHalt is undecidable.

Theorem. The Halting problem is undecidable.

Proof. Suppose H is a Turing machine that decides Halt (the Halting language),
where Halt = {〈M,w, 〉|M halts on w}. Then, we use H to build a Turing machine
SH that decides SelfHalt. We note that on input w, SH first checks if w is a
valid description of a Turing machine. It then duplicates w on the tape and passes
control to H. Thus, SH decides SelfHalt. But since SelfHalt is undecidable, so
is Halt.

13 June 27, 2016

13.1 Recognizable Languages

Theorem. SelfAccept is recognizable.

Proof. We describe a Turing machine SA which on input w, first checks that w is
the encoding of a Turing machine. If not, then SA hangs (or rejects). SA writes
the string ww, which is the encoding for 〈M,M〉 and passes control to the universal
Turing machine U . Thus, we get that

U accepts ⇐⇒ M accepts 〈M〉

Therefore, SelfAccept is recognizable.

Theorem. A language L is decidable if and only if both L and L are recognizable.

Proof. In the forward direction, we suppose that L is decidable. But since L is
decidable, it is also recognizable. We can construct a Turing machine for L by
swapping the accepting and rejecting states of the Turing machine of L.

In the reverse direction, let M1 be a recognizer for L and M2 be a recognizer
for L. We will build a Turing machine M that decides L. On input w, M does the
following:

1. Run both M1 and M2 on input w in parallel.

2. If M1 accepts, then M accepts. If M2 accepts, then M rejects.
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By running in parallel, this means that M has two tapes, one for simulating
each of M1 or M2. M alternates simulation of one step of each machine until one
of them accepts.

Alternatively, we can define M such that on input w, it does the following:

1. Set k = 0.

2. Simulate M1 for k steps on w. Accept if M1 accepts in k steps.

3. Simulate M2 for k steps on w. Reject if M1 accepts in k steps.

4. Increment k by 1.

5. Repeat Steps 2-4 as necessary.

Theorem. Halt is not recognizable, where Halt = {〈M,w〉|M does not halt on w}.

Proof. We know that Halt is recognizable, but not decidable. Thus, we apply the
previous theorem to show that Halt is not recognizable.

13.2 Reductions

Definition. f : Σ∗ → Σ∗ is a reduction from language A to language B if

w ∈ A ⇐⇒ f(w) ∈ B

for all w ∈ Σ∗.

Definition. f : Σ∗ → Σ∗ is computable if there exists a Turing machine that for
any w ∈ Σ∗, halts with f(w) written on the tape.

Remark. A language A reduces to a language B, denoted as A ≤m B, if there is a
computable reduction from A to B.

Theorem. If A ≤m B and A is undecidable, then so is B.

Proof. Suppose that B is decidable and let f : Σ∗ → Σ∗ such that w ∈ A ⇐⇒
f(w) ∈ B for every w ∈ Σ∗. Let MB be a Turing machine that decides B and Mf

be a Turing machine that computes f . Then we can construct a Turing machine M
that decides A on input w. We will define M as follows:

1. Simulate Mf on w to compute f(w).

2. Simulate MB on f(w).

3. Accept if MB accepts and reject if MB rejects.
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However, this contradicts the fact that A is undecidable. Therefore, B is also
undecidable.

Remark. To prove that a language L is undecidable, we reduce a known undecidable
language to L.

Theorem. The language

Any = {〈M〉|L(M) contains at least one string }

is undecidable.

Proof. Suppose that we can decide the language Any. We show that this implies
that we can decide Halt. Given any input 〈M,w〉 to the Halting problem, we
construct a machine M ′ = f(〈M,w〉) that on any input y does the following:

1. Erases the input y.

2. Writes 〈M,w〉 on its tape.

3. Runs M on input w (using the universal Turing machine).

4. Accepts if and only if M halts on w.

Then

L(M ′) =

{
Σ∗ if M halts on w

∅ if M does not halt on w

If we can decide whether a machine accepts any string at all, we an apply this
decision procedure to M ′. Therefore, this would determine whetherM halts on w.
That is, we would be able to decide Halt, which is a contradiction.

Theorem. The language

Rev = {〈M〉|M is a Turing machine that accepts wR whenever it accepts w}

is undecidable.

Proof. Suppose that we can decide the language Rev. We show that this implies we
can decide Halt. Given any input 〈M,w〉 to the Halting problem, we construct a
machine M ′ = f(〈M,w〉) that on any input ydoes the following:

1. If y = 01, we accept.

2. if y 6= 10, we reject.

3. if y = 10, simulate M on w and accept if M halts.
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Thus, if M halts on w, then L(M ′) = {01, 10}, so 〈M ′〉 ∈ Rev. Conversely, if
〈M,w〉 6∈ Halt, then L(m′) = {01}, so 〈M ′〉 6∈ Rev. This shows that f(〈M,w〉) =
〈M ′〉 is a reduction from Halt to Rev. Since f is computable, we conclude that Rev
is necessarily undecidable.

Theorem. The language

Reg = {〈M〉|M is a Turing machine and L(M) is regular}

is undecidable.

Proof. Suppose that we can decide the language Reg. .We show that this implies
that we can decide Halt. Given any inout 〈M,w〉 to the Halting problem, we
construct the machine M ′ = f(〈M,w〉) that on input y does the following:

1. if y has the form 0n1n, then accept.

2. if y does not have this form, then we run M on input w and accept if M halts.

If M halts on w, then L(M ′) = Σ∗, which is a regular language, so 〈M ′〉 ∈ Reg.
Conversely, if 〈M,w〉 6∈ Halt, then L(M ′) = {0n1n|n ≥ 0}, which is not regular
so 〈M ′〉 6∈ Reg. This shows that f(〈M,w〉) = 〈M ′〉 is a reduction from Halt to
Reg.

14 June 29, 2016

14.1 Selected Problems

Example. Prove that

SameC = {〈M1,M2〉|M1,M2 are Turing machines and L(M1) = L(M2)}

is undecidable.

We will reduce this to the Halting problem. Suppose to the contrary that we can
decide SameC. Given any input 〈M,w〉 to the Halting problem, we construct an
input to SameC by making sure that L(M1) = Σ∗ only if input M halts on w, and
makes L(M1) = ∅ otherwise. We ensure that L(M2) = ∅. But then, our Turing
machine for SameC decides the Halting problem, which is a contradiction.

Example. Prove that the language

NonEmpty = {〈M〉|M accepts some string}

is recognizable.
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Suppose that s1, s2, s3, ... is a list of all possible strings over the alphabet. We
construct a machine R such that for i = 0, 1, 2, ... we run M for i steps on each
input s1, s2, ..., si. We note that by this way of computation, we are able to traverse
all strings over the alphabet. If any computation accepts, then R accepts.

Example. Let
Fin = {〈M〉|L(M) is finite}

Prove that Fin and Fin are both not recognizable.

Suppose to the contrary that Fin is recognizable by the Turing machine F . We
will reduce Halt to Fin. On any input 〈M,w〉 to Halt, we will construct a Turing
machine M ′ = f(〈M,w〉), where M ′ on input y, first saves y onto a second tape, then
runs M on w for |y| steps. If M does not halt, M ′ accepts, and rejects otherwise. We
note that if 〈M,w〉 ∈ Halt, then L(M ′) = Σ∗. Otherwise, in the case that M halts
on w in n steps, M ′ would accept if |y| < n. In this case, L(M ′) = {y ∈ Σ∗||y| < n}.

If 〈M,w〉 ∈ Halt, then M ′ ∈ Fin. If 〈M,w〉 6∈ Halt, then M ′ 6∈ Fin. Since we
know that Halt is unrecognizable, then Fin is not recognizable.

Example. Let L be a regular language. Let

prefmax(L) = {x ∈ L|xy ∈ L ⇐⇒ y = ε}

Prove that prefmax(L) is regular.

Since L is a regular language, then there is a DFA for L. We construct a DFA
for prefmax(L) by simply removing all outgoing transitions from the accepting
states of L and removing all accepting states which have outgoing transitions which
eventually lead to an accepting state.

Example. Prove that

L = {〈M1,M2,M3〉|L(M1) = L(M2)L(M3)}

is unrecognizable.

Suppose to the contrary that L is recognizable. We will show by reduction that
Halt is recognizable, thus leading to a contradiction. Given any input 〈M,w〉 to
Halt, we can construct an input 〈M1,M2,M3〉 to L. M3 is set to be the empty set.
M is first run on input w. If M halts, then we accept. That is, L(M1) = Σ∗ and
L(M3) = ∅. In the case that it does not halt, then we have both L(M1) = L(M3) =
∅.
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